?

Log in

No account? Create an account

Previous Entry | Next Entry

Энтропия держит цепко

Сади Карно первым понял, что не вся энергия может быть превращена в работу, а Рудольф Клаузиус придумал слово «энтропия» для обозначения этой неуловимой части. Количественно информация – это и есть изменение энтропии (с обратным знаком); по крайней мере, Шеннон с фон Нойманом именно так ее и определили.


Больше всего меня беспокоило подходящее имя. Сначала я хотел говорить об «информации», но это слово уж слишком затасканное, поэтому я склонялся в пользу «меры неопределенности». Когда я рассказал об этом Джону фон Нойману, у него возникла идея получше. Фон Нойман сказал мне: «Ты должен назвать это «энтропией», по двум причинам. Во-первых, твоя «мера неопределенности» уже была использована в статистической механике под тем самым именем. Во-вторых и в-главных, никто не знает, что такое на самом деле энтропия, так что в любом обсуждении преимущество будет на твоей стороне».

Недавняя работа японцев, подковавших блоху приручивших демона Максвелла, наделала много переполоху в популярной прессе. Но, как и во всяком вечном двигателе, процесс получения энергии из информации у них был сопряжен с потреблением гораздо большей энергии извне. Как заметил автор комментария, помещенного издателями вместе с оригинальной публикацией: «Этот эксперимент подобен производству крошечного количества энергии путем термоядерного синтеза в реакторе, требующем колоссального энергообеспечения».


Карикатура Арье Бен-Наима
на знаменитый разговор Шеннона и фон Ноймана (отсюда)

Posts from This Journal by “информация” Tag

Comments

egovoru
Nov. 8th, 2014 03:01 pm (UTC)
Вот что он пишет дальше, в конце этой главы:

"We shall see in the next chapter that [Shannon measure of information] is a very general concept, defined for any distribution. On the other hand, the statistical mechanical entropy, which is identical with the thermodynamic entropy, is defined only on a very limited number of distributions".

"Thus, although the two concepts of entropy and SMI have identical formal structure when defined in terms of probability distributions, they are very different in their range of applicability".

"Then in Chapter 3, we shall show that the SMI, when applied to an ideal gas, provides a quantitative expression for the thermodynamic entropy of an ideal gas. Thus, it will be established that entropy is a particular example of an SMI".

Edited at 2014-11-08 03:15 pm (UTC)