?

Log in

No account? Create an account

Previous Entry | Next Entry

Мысль Пифагора о том, что в основе мира лежит число, в наш компьютерный век переживает второе рождение. Макс Тегмарк – один из наиболее активных проповедников этого мировоззрения. Уважаемый evgeniirudnyi нашел статью, где Тегмарк излагает ход своих рассуждений достаточно последовательно. Собственно, его вывод о математической природе реальности – такая двухходовка:


1) Если мы принимаем существование объективной (независимой от нашего сознания) реальности, то это значит, что мы можем создать такую «теорию всего», которая совсем не использовала бы наш обычный язык (описания на котором Тегмарк изящно именует baggage в значении «лишний вес»), а только язык математики.

2) Нечто, что может быть описано с применением только языка математики, само по себе является математической структурой.

Кажется, автор совсем забыл, что одну и ту же математическую истину можно записать бесконечным множеством различных способов – но любой из них будет понятен только тому, кто знаком с использованными в нем обозначениями. Иными словами, прежде, чем математическое высказывание приобретает для нас смысл, мы должны научиться переводить его на наш обычный язык (на что требуется несколько лет математического образования). Так что математическое описание не только Вселенной, но и чего бы то ни было – только крыша дома, построенного при помощи нашего обычного языка, обойтись без которого ведь никак невозможно.

Когда об «общей теории всего» говорит, например, Стивен Вайнберг, он имеет в виду всего лишь теорию, которая смогла бы объединить общую теорию относительности и квантовую теорию поля. Судя по картинке в статье Тегмарка, он вроде бы подразумевает то же самое. Но Вайнберг отлично понимает, что за пределами доступных нам сейчас энергий вполне могут обнаружиться еще какие-то взаимодействия, которые не охватываются ни ОТО, ни КТП – и, соответственно, потребуют новой теории для их описания. А вот Тегмарк, похоже, совсем об этом не думает :)



Карикатура Judy Horacek

Posts from This Journal by “математика” Tag

Comments

( 99 comments — Leave a comment )
freesopher
Jul. 29th, 2015 02:39 pm (UTC)
"кто знаком с использованными в нем обозначениями"
----
:) Так с обозначениями или значениями?
egovoru
Jul. 29th, 2015 11:27 pm (UTC)
С обозначениями. Я имею в виду, что, например, знак "5" не нуждается в пояснении обычным языком только для того, кто уже выучил, что этот знак обозначает число пять (которое может быть обозначено и иначе, скажем, как "V" в системе римских цифр). Иными словами, прежде чем обмениваться мат. высказываниями, нам необходимо договориться о принятых обозначениях - а как же можно это сделать, не используя обычного языка? А раз так, то любая мат. структура содержит обычный язык, даже если только в скрытом виде.
(no subject) - freesopher - Aug. 3rd, 2015 05:50 am (UTC) - Expand
evgeniirudnyi
Jul. 29th, 2015 02:46 pm (UTC)
На тему соотвествия описания и предмета есть прекрасная книга

Bas C Van Fraassen Scientific Representation: Paradoxes of Perspective.

Тегмарку следовало бы ее проработать, но Тегмарк не любит читать других, он предпочитает творить с чистого лица.

Две цитаты из книги ван Фраассена к теме:

p. 83 “Suppose now that science gives us a model which putatively represents the world in full detail. Suppose even we believe that this is so. Suppose we regard ourselves as knowing that it is so. Then still, before we can go on to use that model, to make predictions and build bridges, we must locate ourselves with respect to that model. So apparently we need to have something in addition to what science has given us here. The extra is the self-ascription of location.”

p. 83 “Have we now landed in a dilemma for our view of science as paradigmatically objective? If we say that the self-ascription is a simple, objective statement of fact, then science is inevitably doomed to be objectively incomplete. If instead we say it is something irreducibly subjective, then we have also admitted a limit to objectivity, we have let subjectivity into science.”
egovoru
Jul. 29th, 2015 11:47 pm (UTC)
"model which putatively represents the world in full detail"

Признаться, я вижу проблемы уже на этой стадии. Модель предмета, которая точно воспроизводит все детали предмета, ведь и есть сам этот предмет! А свое представление о мире мы потому и называем моделью, что оно воспроизводит только важные для нас (воспринимаемые нами?) детали предмета, оставляя неважные (невоспринимаемые) за скобками. Поскольку мы никогда не сможем гарантировать, что мы восприняли все детали (у нас по определению нет способа проверить, что осталось за пределами нашего восприятия), то наша модель мира всегда остается недостроенной.

А книжка ван Фраассена, похоже, и правда страшно интересная: добавляю сюда ссылку на нее в Google Books.
(no subject) - evgeniirudnyi - Jul. 30th, 2015 06:35 am (UTC) - Expand
(no subject) - egovoru - Jul. 30th, 2015 12:28 pm (UTC) - Expand
verum_corpus
Jul. 29th, 2015 04:47 pm (UTC)
Я что-то ничего не понял.
Математическое описание ведь само по себе ничего не даёт, если число уравнений не совпадает с числом неизвестных.
egovoru
Jul. 29th, 2015 11:25 pm (UTC)
Система уравнений - это уже достаточно сложное математическое высказывание, а их зависимость от обычного языка отчетливо видна даже на самом элементарном уровне. Я имею в виду, что, например, знак "5" не нуждается в пояснении обычным языком только для того, кто уже выучил, что этот знак обозначает число пять (которое может быть обозначено и иначе, скажем, как "V" в системе римских цифр). Иными словами, прежде чем обмениваться мат. высказываниями, нам необходимо договориться о принятых обозначениях - а как же можно это сделать, не используя обычного языка? А раз так, то любая мат. структура содержит обычный язык, даже если только в скрытом виде.

Edited at 2015-07-29 11:25 pm (UTC)
(no subject) - verum_corpus - Jul. 30th, 2015 04:17 pm (UTC) - Expand
(no subject) - egovoru - Jul. 30th, 2015 10:13 pm (UTC) - Expand
(no subject) - verum_corpus - Jul. 31st, 2015 12:24 pm (UTC) - Expand
(no subject) - egovoru - Jul. 31st, 2015 12:33 pm (UTC) - Expand
(no subject) - evgeniirudnyi - Jul. 30th, 2015 06:32 am (UTC) - Expand
(no subject) - egovoru - Jul. 30th, 2015 01:05 pm (UTC) - Expand
(no subject) - evgeniirudnyi - Jul. 30th, 2015 07:31 pm (UTC) - Expand
(no subject) - egovoru - Jul. 30th, 2015 10:03 pm (UTC) - Expand
(no subject) - evgeniirudnyi - Jul. 31st, 2015 06:29 am (UTC) - Expand
(no subject) - egovoru - Jul. 31st, 2015 11:40 am (UTC) - Expand
(no subject) - evgeniirudnyi - Jul. 31st, 2015 01:04 pm (UTC) - Expand
(no subject) - egovoru - Jul. 31st, 2015 01:07 pm (UTC) - Expand
(no subject) - evgeniirudnyi - Jul. 31st, 2015 01:13 pm (UTC) - Expand
(no subject) - egovoru - Jul. 31st, 2015 10:17 pm (UTC) - Expand
(no subject) - evgeniirudnyi - Aug. 1st, 2015 06:32 am (UTC) - Expand
(no subject) - egovoru - Aug. 1st, 2015 01:40 pm (UTC) - Expand
(no subject) - evgeniirudnyi - Aug. 1st, 2015 02:01 pm (UTC) - Expand
(no subject) - egovoru - Aug. 1st, 2015 02:21 pm (UTC) - Expand
(no subject) - egovoru - Aug. 1st, 2015 02:31 pm (UTC) - Expand
(no subject) - evgeniirudnyi - Aug. 1st, 2015 03:18 pm (UTC) - Expand
(no subject) - egovoru - Aug. 1st, 2015 04:31 pm (UTC) - Expand
(no subject) - evgeniirudnyi - Aug. 2nd, 2015 09:20 am (UTC) - Expand
(no subject) - egovoru - Aug. 2nd, 2015 12:52 pm (UTC) - Expand
(no subject) - evgeniirudnyi - Aug. 2nd, 2015 03:19 pm (UTC) - Expand
(no subject) - egovoru - Aug. 2nd, 2015 03:56 pm (UTC) - Expand
(no subject) - evgeniirudnyi - Aug. 2nd, 2015 04:56 pm (UTC) - Expand
(no subject) - egovoru - Aug. 2nd, 2015 05:24 pm (UTC) - Expand
(no subject) - egovoru - Aug. 2nd, 2015 05:35 pm (UTC) - Expand
(no subject) - evgeniirudnyi - Aug. 2nd, 2015 07:15 pm (UTC) - Expand
(no subject) - re_xor - Jul. 30th, 2015 01:33 am (UTC) - Expand
egovoru
Jul. 30th, 2015 11:48 am (UTC)
"примере программы или алгоритма"

А что такое алгоритм? Это ведь запись последовательности определенных действий. В случае машинных алгоритмов все просто: мы сами создали машины таким образом, чтобы они непосредственно реагировали на наши команды, записанные определенным способом.

Если же речь идет об алгоритмах, которыми мы собираемся управлять живыми существами, мы должны предварительно позаботиться, чтобы эти существа понимали наши команды: грубо говоря, сформировать у них условные рефлексы! Иными словами, здесь нужен перевод, интерфейс.

Предполагать, что сознание - это алгоритм, это примерно то же самое, что думать, что Вселенная - это часы (иными словами, переносить свойства нашего последнего технического изобретения на внешний мир; наше сознание в данном случае - внешний мир, потому что не мы его создали).

Это не значит, что нельзя пытаться смоделировать какие-то желательные нам свойства частей этого внешнего мира в железе/силиконе (чем мы постоянно и занимаемся). Но, мне кажется, важно не забывать, что построенное нами не тождественно внешнему миру, а только воспроизводит его в той степени, в какой мы его поняли. А?

"современное пифагорейство более целостно и красиво"

Похоже, что для того, чтобы оценить эту красоту, нужен определенный склад ума ;) Мне пока что не удалось найти убедительное для меня описание этих идей, но я не теряю надежды ;)
(no subject) - re_xor - Jul. 31st, 2015 02:14 am (UTC) - Expand
(no subject) - egovoru - Jul. 31st, 2015 12:07 pm (UTC) - Expand
(no subject) - re_xor - Aug. 1st, 2015 01:57 am (UTC) - Expand
(no subject) - egovoru - Aug. 1st, 2015 01:57 pm (UTC) - Expand
(no subject) - re_xor - Aug. 1st, 2015 10:02 pm (UTC) - Expand
(no subject) - egovoru - Aug. 2nd, 2015 01:11 am (UTC) - Expand
(no subject) - re_xor - Aug. 2nd, 2015 09:55 pm (UTC) - Expand
(no subject) - egovoru - Aug. 2nd, 2015 10:20 pm (UTC) - Expand
(no subject) - re_xor - Aug. 2nd, 2015 10:45 pm (UTC) - Expand
(no subject) - egovoru - Aug. 3rd, 2015 12:49 pm (UTC) - Expand
(no subject) - re_xor - Aug. 4th, 2015 01:52 am (UTC) - Expand
(no subject) - egovoru - Aug. 4th, 2015 12:29 pm (UTC) - Expand
(no subject) - re_xor - Aug. 4th, 2015 11:16 pm (UTC) - Expand
(no subject) - re_xor - Aug. 1st, 2015 10:17 pm (UTC) - Expand
(no subject) - egovoru - Aug. 2nd, 2015 12:57 am (UTC) - Expand
(no subject) - re_xor - Aug. 2nd, 2015 09:59 pm (UTC) - Expand
(no subject) - egovoru - Aug. 2nd, 2015 10:31 pm (UTC) - Expand
(no subject) - re_xor - Aug. 2nd, 2015 10:56 pm (UTC) - Expand
(no subject) - egovoru - Aug. 3rd, 2015 12:38 pm (UTC) - Expand
(no subject) - re_xor - Aug. 4th, 2015 01:47 am (UTC) - Expand
(no subject) - egovoru - Aug. 4th, 2015 12:43 pm (UTC) - Expand
(no subject) - re_xor - Aug. 4th, 2015 11:28 pm (UTC) - Expand
(no subject) - egovoru - Aug. 5th, 2015 02:25 am (UTC) - Expand
(no subject) - re_xor - Aug. 6th, 2015 01:03 am (UTC) - Expand
(no subject) - egovoru - Aug. 6th, 2015 12:53 pm (UTC) - Expand
(no subject) - re_xor - Aug. 7th, 2015 02:27 am (UTC) - Expand
(no subject) - egovoru - Aug. 7th, 2015 02:35 am (UTC) - Expand
(no subject) - re_xor - Aug. 8th, 2015 12:48 am (UTC) - Expand
(no subject) - egovoru - Aug. 8th, 2015 12:56 am (UTC) - Expand
(no subject) - egovoru - Aug. 7th, 2015 12:35 am (UTC) - Expand
(no subject) - re_xor - Aug. 7th, 2015 02:28 am (UTC) - Expand
a_gorb
Jul. 30th, 2015 08:10 am (UTC)
”любой из них будет понятен только тому, кто знаком с использованными в нем обозначениями. Иными словами, прежде, чем математическое высказывание приобретает для нас смысл, мы должны научиться переводить его на наш обычный язык (на что требуется несколько лет математического образования).”
Отмечу, что обучение обычному языку так же занимает несколько лет обучения:)
Более того, Павлов постоянно подчеркивал, что у языка есть такая особенность, как способность удалят нас от действительности, когда за словами мы не видим мира: «Весьма часто случается, что один исследователь не может воспроизвести верных фактов другого — и только потому, что словесная передача этим другим обстановки всего его дела не соответствует, не воспроизводит точно и полно действительности. И, наконец, когда вы дойдете до выводов, когда вы начнете оперировать с теми словесными сигналами — этикетками, которые вы поставили на место фактов, — то здесь фальсификация действительности может достигать огромнейших размеров. Вы видите, как много возникает различных затруднений, которые мешают вам ясно видеть подлинную действительность. И задачей вашего ума будет дойти до непосредственного видения действительности, хотя и при посредстве различных сигналов, но обходя и устраняя многочисленные препятствия, при этом неизбежно возникающие.» Т.е. перевод на обычный язык еще ничего не дает, это может быть также далеко от действительности, как и математическая запись. Более того, в моей практике обычно бывает наоборот – математическое описание имеет смысл, а вот его перевод на обыденный язык дает не слишком осмысленный набор слов. Например, как перевести на обыденный язык утверждение: «данная величина имеет экспоненциальный рост»?

”язык математики”
А что это такое, что это за язык?
Не думаю, что это набор математических символов и терминов. Большая часть из них возникли исторически, т.е. случайно, в силу привычки, под влиянием не математических соображений и т.п.

Математика занимается построением дедуктивных систем. Т.е. из аксиом по определенным правилам выводит следствия. Вот способ построения таких дедуктивных систем (с самими этими системами) я бы и назвал языком математики.
В чем сила математики. Если у вас где-то есть нечто, что удовлетворяет неким аксиомам, то по определенным правилам (обычно называемым правилами логики) можно получить следствия. Но математика сделала это за нас, она уже построила очень разработанные дедуктивные системы, поэтому то и можно и нужно воспользоваться уже готовым математическим результатом, а не проделывать всю цепочку логических рассуждений каждый раз заново. Тем более, что такая цепочка для своего изложения может потребовать нескольких томов:) Вот эти дедуктивные системы и являются языком математики. Причем одну и туже систему удается применять совершенно в разных областях.

Я уже несколько раз спрашивал и пока не получил ответа на такой вопрос: Существуют ли примеры, когда объекты НЕ следуют логическому выводу, т.е. когда аксиомы выполняются, а следствия из них нет? Пока я такого примера не увидел:)

И тут возникает вопрос – а почему природа должна следовать этим выводам, которые в чрезвычайно развернутой форме «дарит» нам математика? Это либо божественный промысел, либо сами правила вывода заимствованы из природы (и преобразованы нашим мозгом). Но если они адекватны природе, то в этом смысле вполне можно в переносном значении говорить, что природа является математической структурой. Хотя на самом деле наоборот, математика пользуется закономерностями природы. Но самый главный вывод отсюда – что такие закономерности имеют место быть!
egovoru
Jul. 30th, 2015 01:01 pm (UTC)
"обучение обычному языку так же занимает несколько лет обучения"

Верно, и именно поэтому Павлов и выделил язык как отдельную (вторую) сигнальную систему ;)

"математическое описание имеет смысл, а вот его перевод на обыденный язык дает не слишком осмысленный набор слов"

Именно с этой повышенной четкостью, по сравнению с обычным языком, математического описания и связана эффективность математики. Недаром время от времени возрождается надежда, что, если бы нам удалось описать, например, систему морали на языке математики (как хотел Спиноза), нас бы миновали многие напрасные муки ;)

"Вот способ построения таких дедуктивных систем (с самими этими системами) я бы и назвал языком математики"

Не имею ничего против такого определения, но в приложении к обсуждаемой гипотезе (мир - это число), Тегмарк говорит не о способе(способ ведь нельзя приравнять к миру, это ведь еще хуже, чем сравнивать яблоки с апельсинами?), а о структуре. Когда он определят "мат. структуру" как то, для описания чего можно обойтись только языком математики, без привлечения обычного языка, очевидно, он имеет в виду именно запись, текст - последовательность символов? Или я неправильно это поняла?

"Существуют ли примеры, когда объекты НЕ следуют логическому выводу"

А что Вы имеете в виду под "объектами"? Математические следствия, конечно, не могут не следовать из аксиом: ведь математика и есть набор аксиом плюс набор правил дедукции. Все следствия следуют автоматически ;)

Если же под объектами Вы понимаете объекты (явления?) реального мира, то мат. описание некоторых из них - например, движение подброшенного вверх камня - сравнительно просто, а вот можно ли составить мат. описание, скажем, моральной системы - вопрос открытый, даже несмотря на всю гениальность Спинозы, попытавшегося это сделать ;)

"почему природа должна следовать этим выводам, которые в чрезвычайно развернутой форме «дарит» нам математика"

Да, это, конечно, и есть тот главный вопрос, который и порождает все это пифагорейство! Раз природа так хорошо описывается математикой, значит, математика и лежит в ее основе - Тегмарк тоже проговаривает это заклинание в своей статье ;) Но мне, признаться, такое рассуждение совсем не кажется убедительным - и мы, насколько я помню, уже обсуждали это с Вами.

Не стоит забывать, что ведь тот самый набор аксиом (скажем, евклидовских), который лежит в основе математики, мы взяли не с потолка, а сформулировали как обобщение нашего практического опыта, как отражение воспринимаемых нами свойств внешнего мира. Точно так же и наш набор правил дедукции - не случаен, а основан на нашем опыте жизни в мире. Да, исходя из этого "первичного набора", мы можем получать новое знание, уже не опираясь на внешний мир - мы даже можем, например, произвольно изменить аксиомы и/или правила и посмотреть, что из этого получится? Но стоит ли удивляться, что плоды этих усилий все же оказываются не чем иным, как описанием все того же мира (каких-то его частей)?

На мой взгляд, удивительнее было бы другое: если бы нам удалось придумать что-нибудь такое, что не имело бы к миру никакого отношения ;) По-моему, та же проблема возникает в литературе вообще и в научной фантастике в частности: как бы ни старались авторы, все равно их фантазия ограничена реалиями этого мира (включая реальные возможности наших мозгов, как части все того же мира ;)
(no subject) - a_gorb - Jul. 30th, 2015 01:24 pm (UTC) - Expand
(no subject) - egovoru - Jul. 30th, 2015 10:36 pm (UTC) - Expand
(no subject) - a_gorb - Aug. 1st, 2015 07:24 am (UTC) - Expand
(no subject) - egovoru - Aug. 1st, 2015 01:26 pm (UTC) - Expand
(no subject) - a_gorb - Aug. 1st, 2015 03:30 pm (UTC) - Expand
(no subject) - egovoru - Aug. 1st, 2015 04:15 pm (UTC) - Expand
(no subject) - a_gorb - Aug. 2nd, 2015 10:05 am (UTC) - Expand
(no subject) - egovoru - Aug. 2nd, 2015 01:01 pm (UTC) - Expand
nebos_avos
Aug. 4th, 2015 05:14 pm (UTC)
Сегодня попалась мне статья на сходную тему http://www.topos.ru/article/1239
Более всего понравилось следующее суждение:

Допустим, я верю в Творца Вселенной. Но при этом считаю совершенно невозможным поверить в Бога, создающего мир на основе уравнений высшей математики (Э. Гуссерль: Бог не считает; считает лишь человек). Например, если многие космологи считают абсурдным допущение, что столь тонкая подгонка физических констант явилась результатом слепого случая, то утверждение о том, что Бог занимался подгонкой констант на основе уравнений высшей математики, представляется почти таким же абсурдным.
egovoru
Aug. 5th, 2015 02:14 am (UTC)
На это очень хочется заметить, как я уже многократно здесь делала:

Способ, как творил Создатель,
Что считал он боле кстати,
Знать не может председатель
Комитета о печати ;)

А если серьезно, то такие статьи, как эта на "Топосе", мне явно не под силу - тут нужен сугубо философски настроенный ум, а я-то даже не в состоянии понять, что, собственно, хочет сказать автор :(
evgeniirudnyi
Aug. 6th, 2015 07:30 pm (UTC)
Кстати вот ссылочка на статью известного физика против платонизма

ROVELLI, Carlo, Michelangelo's Stone: an Argument against Platonism in Mathematics

и последующее обсуждение на everything-list

https://groups.google.com/forum/#!topic/everything-list/vqEsGle1Tdw
egovoru
Aug. 7th, 2015 12:32 am (UTC)
Спасибо, очень интресно! Ровелли обсуждает как раз тот самый вопрос, которым задались здесь и мы с уважаемым re_xor: будет ли наша математика универсальным языком, понятным и для разумных инопланетян? Мне доводы автора кажутся убедительными, но, конечно, для настоящего ответа на этот вопрос нужны сами инопланетяне ;)

Добаляю сюда ссылку на эту статью, чтобы каждый раз ее не искать.
(no subject) - re_xor - Aug. 8th, 2015 12:41 am (UTC) - Expand
(no subject) - evgeniirudnyi - Aug. 8th, 2015 05:47 am (UTC) - Expand
(no subject) - egovoru - Aug. 8th, 2015 01:07 pm (UTC) - Expand
(no subject) - evgeniirudnyi - Aug. 8th, 2015 06:15 pm (UTC) - Expand
(no subject) - egovoru - Aug. 8th, 2015 08:17 pm (UTC) - Expand
(no subject) - egovoru - Aug. 8th, 2015 01:39 pm (UTC) - Expand
(no subject) - re_xor - Aug. 9th, 2015 01:31 am (UTC) - Expand
(no subject) - egovoru - Aug. 9th, 2015 01:55 am (UTC) - Expand
(no subject) - re_xor - Aug. 10th, 2015 01:04 am (UTC) - Expand
(no subject) - egovoru - Aug. 10th, 2015 11:01 am (UTC) - Expand
(no subject) - egovoru - Aug. 10th, 2015 12:36 pm (UTC) - Expand
(no subject) - re_xor - Aug. 11th, 2015 12:19 am (UTC) - Expand
(no subject) - egovoru - Aug. 11th, 2015 12:24 pm (UTC) - Expand
(no subject) - re_xor - Aug. 12th, 2015 12:05 am (UTC) - Expand
( 99 comments — Leave a comment )